Neutrophil adhesive contact dependence on impingement force.

نویسندگان

  • C M Spillmann
  • E Lomakina
  • R E Waugh
چکیده

Neutrophil capture and recruitment from the circulation requires the formation of specific receptor/ligand bonds under hydrodynamic forces. In the present study we examine bond formation between beta2-integrins on neutrophils and immobilized ICAM-1 while using micropipettes to control the force of contact between the cell and substrate. Magnesium was used to induce the high affinity conformation of the integrins, and bond formation was assessed by measuring the probability of adhesion during repeated contacts. Increasing the impingement force caused an increase in the contact area and led to a proportional increase in adhesion probability (from approximately 20 to 50%) over the range of forces tested (50-350 pN). In addition, different-sized beads were used to change the force per unit area in the contact zone (contact stress). We conclude that for a given contact stress, the rate of bond formation increases linearly with contact area, but that increasing contact stress results in higher intrinsic rates of bond formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, insecta).

The tarsi of the cricket Tettigonia viridissima bear flexible attachment pads that are able to deform, replicating the profile of a surface to which they are apposed. This attachment system is supplemented by a secretion produced by epidermal cells and transported onto the surface of the pad through the pore canals of the pad cuticle. This study shows that the secretion alone is necessary, but ...

متن کامل

Influence of tangential displacement on the adhesion strength of a contact between a parabolic profile and an elastic half-space

The adhesion strength of a contact between a rotationally symmetric indenter and an elastic half-space is analysed analytically and numerically using an extension of the method of dimensionality reduction for superimposed normal/tangential adhesive contacts. In particular, the dependence of the critical adhesion force on the simultaneously applied tangential force is obtained and the relevant d...

متن کامل

Atrial natriuretic peptide down-regulates neutrophil recruitment on inflamed endothelium by reducing cell deformability and resistance to detachment force.

BACKGROUND Recombinant atrial natriuretic peptide (ANP) is administered in patients with acute heart failure in Japan to improve renal function and hemodynamics, but its anti-inflammatory effect on activated leukocytes may also contribute to its therapeutic efficacy. OBJECTIVE Examine unconventional role of ANP in neutrophil adhesion to inflamed endothelium. METHODS Human neutrophils were p...

متن کامل

Experimental investigation of the effect of tip shape in gecko-inspired adhesive devices under asymmetric detachment

Background It is usually challenging to achieve surfaces that are highly adhesive, yet can be detached easily. Geckos’ foot hairs, however, can be easily detached from a surface even though they adhere to it strongly enough to hold the animal’s body against gravity. Inspired by Nature, a combination of strong adhesion and easy detachment in adhesion system can be achieved and the possibility of...

متن کامل

Contact probing of stretched membranes and adhesive interactions: graphene and other two-dimensional materials

Contact probing is the preferable method for studying mechanical properties of thin two-dimensional (2D) materials. These studies are based on analysis of experimental force-displacement curves obtained by loading of a stretched membrane by a probe of an atomic force microscope or a nanoindenter. Both non-adhesive and adhesive contact interactions between such a probe and a 2D membrane are stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 87 6  شماره 

صفحات  -

تاریخ انتشار 2004